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1 Introdu
tion

The Fren
h 
ar manufa
turer Renault is daily fa
ing a NP-hard 
ombinatorial optimization

problem � 
alled here the Renault tru
k loading problem (RTLP ) � where items need to

be pla
ed in a tru
k while satisfying di�erent 
onstraints. More than a thousand tru
ks are

daily 
onsidered, whi
h have to deliver goods to several 
ar fa
tories. As a single tru
k 
an

deliver goods to di�erent delivery points, 
lasses of items have been de�ned, where a 
lass

is asso
iated with a delivery point. Ea
h problem instan
e 
ontains the size of the tru
k

(in millimeters) and the various sizes of all the items that must �t in (in millimeters). The

heights of the items 
an be ignored as they rely on 
omplex fa
tory 
onstraints whi
h are

supposed to be already satis�ed. At �rst sight, this problem seems related to a strip-pa
king

2D problem with rotation, whi
h has been already 
overed by many resear
h papers (Lodi

et. al. 2002). New features are proposed by Renault in RTLP : di�erent 
lasses of items,

and a signi�
ant number of items per tru
k in 
onjun
tion with a large standard deviation

of the sizes of the items. Su
h elements make the 
onsidered problem more 
omplex, but

more relevant to modern and realisti
 issues. In this paper, we propose to ta
kle RTLP
with Constru
tive Ant Systems (CAS), whi
h are evolutionary population-based meta-

heuristi
s. A good survey on ant algorithms 
an be found in (Dorigo et. al. 2006).

Based on (Respen and Zu�erey 2013), the problem and the solution spa
e stru
ture are for-

mally des
ribed in Se
tion 2, where an e�
ient de
oding greedy algorithm is also designed.

In Se
tion 3 are proposed di�erent ant algorithms for RTLP . Numeri
al experiments are

reported and dis
ussed in Se
tion 4.

2 Des
ription of the problem and solution spa
e stru
ture

RTLP 
an be formally des
ribed as follows. A number n of re
tangular items have to be

pla
ed in a tru
k (of width Wt and length Lt), and 90◦ rotations of items are allowed.

For ea
h item i, we know its width wi, its length li, its initial orientation, and its 
lass

Cj (where j ∈ {1, . . . ,m} with m ≤ n). In addition, the 
lasses must be pla
ed in an

in
reasing fashion from the front to the rear of the tru
k. More pre
isely, the ordinate of

the origin item whi
h belongs to 
lass Ci (label 1 on Figure 1) must be stri
tly smaller

than the ordinate of the extremity of any item of 
lass Ci+1 (label 2 on Figure 1). The goal


onsists in minimizing the ordinate f of the extremity item (the 
losest one to the rear) of


lass Cm (label 3 on Figure 1).

To ta
kle bin-pa
king problems, one 
an work either with dire
t 
oded solutions or indire
t


oded solutions. A dire
t 
oded solution dire
tly represents a real loading of the items in
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the tru
k, whi
h means that the position of ea
h item has to be 
ontinuously known. Then,

if an item is added to or removed from the tru
k, the new position of the loaded items is

very hard to re
ompute, whi
h is a major drawba
k. Working with indire
t 
oded solutions

require the use of a de
oding algorithm to built the asso
iated dire
t 
oded solution and

to get its value. Su
h an approa
h has the main advantage of being very �exible when

adding (resp. removing) an item to (resp. from) the solution. Therefore, a de
ision has

been made to work with indire
t 
oded solutions. More formally, an indire
t 
oded solution

s is a sequen
e of elements. To build a dire
t 
oded solution ŝ and 
ompute its value f(s), a
de
oding greedy algorithm (DGA) is performed on the indire
t 
oded solution s. Component

i of the indire
t 
oded solution s takes the form si = (IDi, Ci), where ID ∈ {1, . . . , n}, and
C ∈ {1, . . . ,m}. DGA de
odes the ve
tor s into a real solution ŝ (i.e. a true loading) by

inserting in ŝ the items from s in a FIFO order. At ea
h step, DGA pops the next item

i of s and orients it greedily (i.e. by minimizing the augmentation of the loading length).

The 
omplexity of DGA is O(n). For instan
es with n = 60, DGA requires less than 0.1

se
ond (on the used 
omputer) to de
ode a solution into a real loading. In summary, DGA
is requested to built a dire
t 
oded solution (i.e. a loading of the tru
k) from an indire
t


oded solution (i.e. a loading sequen
e of items) and to 
ompute the length of the obtained

loading (i.e. the value of the solution).

Preliminary tests showed that the performan
e of DGA is rather poor. Indeed, at ea
h

iteration, DGA orients the involved item without having any visibility on the next items

to insert. To redu
e this drawba
k, the following look-ahead pro
ess is proposed. At ea
h

iteration, DGA evaluates the orientation of the involved unloaded item (say i) as follows.
DGA examines the insertion of the next σ (parameter tuned to 3) insertions subsequent

to the insertion of item i (i.e. a total number of σ + 1 items are tested). DGA tries ea
h

possible orientation (i.e. 90◦-rotated or not-rotated) for ea
h of the σ+1 items in order to

minimize the augmentation of the resulting loading length (in other words, 2(σ+1)
options

are evaluated). The orientation of item i is then the one asso
iated with the best option.

For instan
es with n = 60, DGA requires less than 0.5 se
ond (on the used 
omputer) to

de
ode a solution into a real loading.

3

Cm

Ci+1

Ci+1

Ci

Ci

Ci

C1

C1

C1

21

y

x

fr
o
n
t

re
a
r

Fig. 1. A possible solution for RTLP

3 Ant algorithms for RTLP

We propose three di�erent 
onstru
tive ant algorithms to ta
kle RTLP (denoted CAS(1),
CAS(2) and CAS(3)), where ea
h ant is a 
onstru
tive heuristi
 able to build an indire
t


oded solution, and thus a loading. N (parameter tuned to 10) ants are used at ea
h

generation. For ea
h ant, at iteration i of its 
onstru
tion pro
ess, let s = (s1, s2, . . . , si−1)
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be the partial indire
t 
oded solution 
ontaining i−1 items. As in 
lassi
al ant algorithms,

the sele
tion of the next move (
orresponding here as the next item to load) is based on

the greedy for
e (de�ned as the short term pro�t) and the trail system (whi
h is a 
entral

memory based on the history of the sear
h, allowing ants to ex
hange information). In the

proposed ant algorithms, the GF 's and the TR's are normalized within interval [0,1℄ in

order to better 
ontrol these two types of information.

The greedy for
e GF (i) of an item i is given by GF (i) = UB − DGA(s + {i}), where
UB = 4 · Lt is an upper bound of the loading. We 
an see that the larger GF (i) is, the
shorter is the loading s+ {i}, whi
h is 
onsistent with the notion of short term pro�t.

To de�ne the trail TR(i) of item i, we �rst de�ne the attra
tiveness Attract(j, k) between
two items j and k in an indire
t 
oded solution s as n − dist(j, k), where dist(j, k) is

de�ned as the number of items between j and k in s (but dist(j, k) = 0 if k appears

before j in s). At the end of ea
h generation (i.e. when ea
h ant of the population has

provided a solution), ea
h trail TR(j, k) is updated as follows: TR(j, k) = ρ · TR(j, k) +
(1 − ρ) · ∆TR(j, k), where ρ ∈]0, 1[ is an evaporation 
oe�
ient (�xed to 0.9, as in most

of the ant algorithms) and ∆TR(j, k) is a reinfor
ement term. ∆TR(j, k) is de�ned as the

average attra
tiveness between j and k in the b% (parameter tuned to 50%) best solutions

of the 
urrent generation. The trail value TR(i) of item i 
an now be de�ned as TR(i) =∑
j∈s wji · TR(j, i), where wji is a weight de�ned as index(j)/index(i), where index(j) is

for example three is item j is the 3rd 
omponent of s. These weights allows to give more

importan
e to pairs of items whi
h are 
loser in s (a

ording to the distan
e fun
tion dist).
In CAS(1), when 
onstru
ting an indire
t 
oded solution, ea
h ant sele
ts the next item

i to load � in the set Ω of non already inserted items � using the standard probability

fun
tion prob de�ned as in Equation (1), where α and β are parameters. Interestingly,

preliminary experiments showed that better results are obtained with parameter α (tuned

to 0.5) smaller than parameter β (tuned to 2). It means that more importan
e should be

given to the greedy for
e rather than to the trail.

prob(i) =
GF (i)α · TR(i)β

∑

j∈Ω

GF (j)α · TR(j)β
(1)

In CAS(2), an ant 
hooses the next item i using Equation (1) with probability p (parameter

tuned to 0.35), but the item whi
h maximizes GF (j)·TR(j) otherwise (i.e. with probability

(1 − p)). In other words, CAS(2) is more aggressive than CAS(1) as the usual tradeo�

between the greedy for
es and the trails only o

urs with probability p.
In CAS(3), ea
h ant sele
ts the next item i as follows. First, it generates the set A with

the q% (parameter tuned to 0.75) largest TR values. Then among the set A, it sele
ts the
item with the largest GF value (ties are broken randomly). In 
ontrast with CAS(1) and
CAS(2), the greedy for
es and the trails are su

essively used in order to sele
t the next

item (instead of jointly).

4 Results

In order to better ben
hmark the results, we 
ompare the ant algorithms with an exhaustive

greedy method EG. EG builds an indire
t 
oded solution s from s
rat
h, and at ea
h step

greedily inserts the next item in s (with the use of the look-ahead pro
ess). We 
onsider a

set of 30 real ben
hmark instan
es provided by Renault. Tests were performed on an Intel

Quad-
ore i7 � 3.4 GHz with 8 GB DDR3 of RAM memory, with a time limit T of 900

se
onds. In order to have fair 
omparisons, EG is restarted as long as T is not rea
hed,
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whereas the CAS's results are averaged over 10 runs. Table 1 presents the results of the

di�erent algorithms. For ea
h instan
e ID are �rst given the number n of items and the

numberm of 
lasses. Column f⋆
indi
ates the best obje
tive fun
tion value returned by any

of the 
onsidered algorithms. The se
ond 
olumn EG shows the per
entage gap between

the best solution value returned by EG and f⋆
. The remaining 
olumns show the same

information for the ant algorithms. The last row indi
ates the average gap of ea
h method.

We remark that all the CAS methods outperform EG, whi
h means that the trail system

is relevant. CAS(2) outperforms CAS(1), whi
h shows that an aggressive sele
tion pro
ess

seems to be more interesting than the use of Equation (1). As the best methods is CAS(3),
it seems that a sequential use of the trails and the greedy for
es in the sele
tion pro
ess

of an ant seems to be more e�
ient than the joint use of these quantities (as in CAS(1),
CAS(2), and most of the state-of-the-art ant algorithms). This 
on�rms the observations

of (Zu�erey 2012) for the famous graph 
oloring problem.

Table 1. Obtained results

ID n m f⋆ EG CAS(1) CAS(2) CAS(3)

1 23 1 12970 1.62% 0.80% 1.63% 0.13%

2 25 1 13226 2.07% 0.70% 0.64% 1.48%

3 24 1 12950 2.59% 1.06% 1.38% 0.70%

4 25 1 13170 2.75% 1.32% 1.02% 2.37%

5 26 1 13470 0.07% 1.02% 0.80% 1.02%

6 20 2 14000 2.07% 2.07% 1.73% 1.77%

7 23 1 12980 4.21% 2.74% 2.24% 1.26%

8 25 1 14288 3.26% 1.95% 2.31% 2.37%

9 18 4 13369 0.44% 3.55% 3.40% 4.50%

10 23 3 13068 3.48% 3.92% 3.46% 4.02%

11 20 2 13560 2.06% 1.79% 1.92% 1.89%

12 17 3 12992 2.42% 0.81% 0.88% 0.80%

13 25 1 13470 1.97% 0.93% 1.23% 0.54%

14 20 2 13240 3.55% 3.50% 3.74% 3.44%

15 20 4 13685 2.26% 2.83% 3.27% 2.99%

16 24 1 13070 3.21% 1.71% 2.10% 0.88%

17 23 4 13078 2.03% 1.43% 1.05% 2.09%

18 24 1 13380 4.56% 1.45% 2.27% 0.68%

19 24 1 13380 4.56% 1.45% 2.27% 0.68%

20 23 1 13070 5.05% 2.41% 2.28% 1.29%

21 25 1 13146 2.84% 1.64% 1.44% 2.03%

22 25 1 13470 1.60% 1.04% 1.00% 0.09%

23 24 1 13380 4.04% 1.34% 1.75% 0.97%

24 18 2 11640 2.41% 2.72% 1.67% 1.86%

25 23 1 12550 1.20% 1.87% 1.16% 1.79%

26 19 2 12220 1.06% 1.91% 1.48% 1.69%

27 23 1 13250 5.86% 1.35% 2.08% 0.77%

28 25 1 13416 1.97% 1.66% 1.14% 0.64%

29 20 1 13500 10.74% 5.13% 4.02% 4.79%

30 25 1 13196 3.80% 1.93% 1.07% 2.10%

AVG 2.99% 1.93% 1.88% 1.72%
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