Ant Algorithms for a Truck Loading Problem with
Multiple Destinations

Jean Respen! and Nicolas Zufferey!

GSEM, University of Geneva, Switzerland, jean.respen@unige.ch, n.zuffereyQunige.ch

Keywords: truck loading, bin-packing, evolutionary algorithm.

1 Introduction

The French car manufacturer Renault is daily facing a NP-hard combinatorial optimization
problem — called here the Renault truck loading problem (RTLP) — where items need to
be placed in a truck while satisfying different constraints. More than a thousand trucks are
daily considered, which have to deliver goods to several car factories. As a single truck can
deliver goods to different delivery points, classes of items have been defined, where a class
is associated with a delivery point. Each problem instance contains the size of the truck
(in millimeters) and the various sizes of all the items that must fit in (in millimeters). The
heights of the items can be ignored as they rely on complex factory constraints which are
supposed to be already satisfied. At first sight, this problem seems related to a strip-packing
2D problem with rotation, which has been already covered by many research papers (Lodi
et. al. 2002). New features are proposed by Renault in RTLP: different classes of items,
and a significant number of items per truck in conjunction with a large standard deviation
of the sizes of the items. Such elements make the considered problem more complex, but
more relevant to modern and realistic issues. In this paper, we propose to tackle RTLP
with Constructive Ant Systems (CAS), which are evolutionary population-based meta-
heuristics. A good survey on ant algorithms can be found in (Dorigo et. al. 2006).

Based on (Respen and Zufferey 2013), the problem and the solution space structure are for-
mally described in Section 2, where an efficient decoding greedy algorithm is also designed.
In Section 3 are proposed different ant algorithms for RTLP. Numerical experiments are
reported and discussed in Section 4.

2 Description of the problem and solution space structure

RTLP can be formally described as follows. A number n of rectangular items have to be
placed in a truck (of width W, and length L;), and 90° rotations of items are allowed.
For each item ¢, we know its width w;, its length [;, its initial orientation, and its class
C; (where j € {1,...,m} with m < n). In addition, the classes must be placed in an
increasing fashion from the front to the rear of the truck. More precisely, the ordinate of
the origin item which belongs to class C; (label 1 on Figure 1) must be strictly smaller
than the ordinate of the extremity of any item of class C;11 (label 2 on Figure 1). The goal
consists in minimizing the ordinate f of the extremity item (the closest one to the rear) of
class Cy, (label 3 on Figure 1).

To tackle bin-packing problems, one can work either with direct coded solutions or indirect
coded solutions. A direct coded solution directly represents a real loading of the items in

the truck, which means that the position of each item has to be continuously known. Then,
if an item is added to or removed from the truck, the new position of the loaded items is
very hard to recompute, which is a major drawback. Working with indirect coded solutions
require the use of a decoding algorithm to built the associated direct coded solution and
to get its value. Such an approach has the main advantage of being very flexible when
adding (resp. removing) an item to (resp. from) the solution. Therefore, a decision has
been made to work with indirect coded solutions. More formally, an indirect coded solution
s is a sequence of elements. To build a direct coded solution § and compute its value f(s), a
decoding greedy algorithm (DGA) is performed on the indirect coded solution s. Component
i of the indirect coded solution s takes the form s; = (ID;,C;), where ID € {1,...,n}, and
C € {1,...,m}. DGA decodes the vector s into a real solution § (i.e. a true loading) by
inserting in § the items from s in a F'IFO order. At each step, DGA pops the next item
i of s and orients it greedily (i.e. by minimizing the augmentation of the loading length).
The complexity of DGA is O(n). For instances with n = 60, DG A requires less than 0.1
second (on the used computer) to decode a solution into a real loading. In summary, DG A
is requested to built a direct coded solution (i.e. a loading of the truck) from an indirect
coded solution (i.e. a loading sequence of items) and to compute the length of the obtained
loading (i.e. the value of the solution).

Preliminary tests showed that the performance of DGA is rather poor. Indeed, at each
iteration, DG A orients the involved item without having any visibility on the next items
to insert. To reduce this drawback, the following look-ahead process is proposed. At each
iteration, DG A evaluates the orientation of the involved unloaded item (say) as follows.
DGA examines the insertion of the next o (parameter tuned to 3) insertions subsequent
to the insertion of item ¢ (i.e. a total number of o + 1 items are tested). DGA tries each
possible orientation (i.e. 90°-rotated or not-rotated) for each of the o + 1 items in order to
minimize the augmentation of the resulting loading length (in other words, 2(°*+% options
are evaluated). The orientation of item ¢ is then the one associated with the best option.
For instances with n = 60, DG A requires less than 0.5 second (on the used computer) to
decode a solution into a real loading.

G

Cina

rear

G

front

G

=

Cm

Cina

<

X
:
i
:
i
'
|
'
!
;
X 1 2 3

Fig. 1. A possible solution for RT'LP

3 Ant algorithms for RTLP

We propose three different constructive ant algorithms to tackle RT'LP (denoted C AS(1),
CAS(2) and CAS(3)), where each ant is a constructive heuristic able to build an indirect
coded solution, and thus a loading. N (parameter tuned to 10) ants are used at each
generation. For each ant, at iteration 4 of its construction process, let s = (s1, $2,...,8i—1)

be the partial indirect coded solution containing i — 1 items. As in classical ant algorithms,
the selection of the next move (corresponding here as the next item to load) is based on
the greedy force (defined as the short term profit) and the trail system (which is a central
memory based on the history of the search, allowing ants to exchange information). In the
proposed ant algorithms, the GF’s and the TR’s are normalized within interval [0,1] in
order to better control these two types of information.

The greedy force GF (i) of an item ¢ is given by GF (i) = UB — DGA(s + {i}), where
UB = 4 - L; is an upper bound of the loading. We can see that the larger GF (i) is, the
shorter is the loading s + {4}, which is consistent with the notion of short term profit.

To define the trail TR(i) of item 4, we first define the attractiveness Attract(j, k) between
two items j and k in an indirect coded solution s as n — dist(j, k), where dist(j,k) is
defined as the number of items between j and k in s (but dist(j,k) = 0 if k appears
before j in s). At the end of each generation (i.e. when each ant of the population has
provided a solution), each trail TR(j, k) is updated as follows: TR(j, k) = p- TR(j,k) +
(1 —p)- ATR(j, k), where p €]0,1[is an evaporation coefficient (fixed to 0.9, as in most
of the ant algorithms) and AT R(j, k) is a reinforcement term. AT R(j, k) is defined as the
average attractiveness between j and k in the b% (parameter tuned to 50%) best solutions
of the current generation. The trail value T R(7) of item ¢ can now be defined as TR(i) =
> jes Wii - TR(j,7), where wj; is a weight defined as index(j)/index(i), where index(j) is
for example three is item j is the 3rd component of s. These weights allows to give more
importance to pairs of items which are closer in s (according to the distance function dist).
In CAS(1), when constructing an indirect coded solution, each ant selects the next item
i to load — in the set {2 of non already inserted items — using the standard probability
function prob defined as in Equation (1), where o and § are parameters. Interestingly,
preliminary experiments showed that better results are obtained with parameter « (tuned
to 0.5) smaller than parameter 5 (tuned to 2). It means that more importance should be
given to the greedy force rather than to the trail.

~_ GF(i)*-TR()"
PO = =GR G TRGY W
jen

In CAS(2), an ant chooses the next item 4 using Equation (1) with probability p (parameter
tuned to 0.35), but the item which maximizes GF(j)-TR(j) otherwise (i.e. with probability
(1 — p)). In other words, CAS(2) is more aggressive than C'AS(1) as the usual tradeoff
between the greedy forces and the trails only occurs with probability p.

In CAS(3), each ant selects the next item ¢ as follows. First, it generates the set A with
the ¢% (parameter tuned to 0.75) largest TR values. Then among the set A, it selects the
item with the largest GF value (ties are broken randomly). In contrast with CAS(1) and
CAS(2), the greedy forces and the trails are successively used in order to select the next
item (instead of jointly).

4 Results

In order to better benchmark the results, we compare the ant algorithms with an exhaustive
greedy method EG. EG builds an indirect coded solution s from scratch, and at each step
greedily inserts the next item in s (with the use of the look-ahead process). We consider a
set of 30 real benchmark instances provided by Renault. Tests were performed on an Intel
Quad-core i7 @ 3.4 GHz with 8 GB DDR3 of RAM memory, with a time limit T of 900
seconds. In order to have fair comparisons, FG is restarted as long as T is not reached,

whereas the C'AS’s results are averaged over 10 runs. Table 1 presents the results of the
different algorithms. For each instance ID are first given the number n of items and the
number m of classes. Column f* indicates the best objective function value returned by any
of the considered algorithms. The second column EG shows the percentage gap between
the best solution value returned by EG and f*. The remaining columns show the same
information for the ant algorithms. The last row indicates the average gap of each method.
We remark that all the CAS methods outperform EG, which means that the trail system
is relevant. C AS(2) outperforms C AS(1), which shows that an aggressive selection process
seems to be more interesting than the use of Equation (1). As the best methods is CAS(3),
it seems that a sequential use of the trails and the greedy forces in the selection process
of an ant seems to be more efficient than the joint use of these quantities (as in CAS(1),
CAS(2), and most of the state-of-the-art ant algorithms). This confirms the observations
of (Zufferey 2012) for the famous graph coloring problem.

Table 1. Obtained results

ID n m f EG CAS(1) CAS(2) CAS(3)
1 23 1 12970 1.62% 0.80% 1.63% 0.13%
2 25 1 13226 2.07% 0.70% 0.64% 1.48%
3 24 1 12950 2.59% 1.06% 1.38% 0.70%
4 25 1 13170 2.75% 1.32% 1.02% 2.37%
5 26 1 13470 0.07% 1.02% 0.80% 1.02%
6 20 2 14000 2.07% 2.07% 1.73% 1.77%
7 23 1 12980 4.21% 2.74% 2.24% 1.26%
8 25 1 14288 3.26% 1.95% 2.31% 2.37%
9 18 4 13369 0.44% 3.55% 3.40% 4.50%
10 23 3 13068 3.48% 3.92% 3.46% 4.02%
11 20 2 13560 2.06% 1.79% 1.92% 1.89%
12 17 3 12992 2.42% 0.81% 0.88% 0.80%
13 25 1 13470 1.97% 0.93% 1.23% 0.54%
14 20 2 13240 3.55% 3.50% 3.74% 3.44%
15 20 4 13685 2.26% 2.83% 3.27% 2.99%
16 24 1 13070 3.21% 1.711% 2.10% 0.88%
17 23 4 13078 2.03% 1.43% 1.05% 2.09%
18 24 1 13380 4.56% 1.45% 2.27% 0.68%
19 24 1 13380 4.56% 1.45% 2.27% 0.68%
20 23 1 13070 5.05% 2.41% 2.28% 1.29%
21 25 1 13146 2.84% 1.64% 1.44% 2.03%
22 25 1 13470 1.60% 1.04% 1.00% 0.09%
23 24 1 13380 4.04% 1.34% 1.75% 0.97%
24 18 2 11640 2.41% 2.72% 1.67% 1.86%
25 23 1 12550 1.20% 1.87% 1.16% 1.79%
26 19 2 12220 1.06% 1.91% 1.48% 1.69%
27 23 1 13250 5.86% 1.35% 2.08% 0.77%
28 25 1 13416 1.97% 1.66% 1.14% 0.64%
29 20 1 13500 10.74% 5.13% 4.02% 4.79%
30 25 1 13196 3.80% 1.93% 1.07% 2.10%
AVG 2.99% 1.93% 1.88% 1.72%

References

Dorigo, M., Birattari, M., and Stuetzle, T., 2006, "Ant colony optimization - artificial ants as
a computational intelligence technique", IEEE Computational Intelligence Magazine, Vol. 1,
pp. 28-39.

Lodi, A., Martello, S., and Monaci, M., 2002, "Two-dimensional packing problems: A survey",
European Journal of Operational Research, Vol. 141, pp. 241-252.

Respen, J., Zufferey, N., 2013, "A Renault truck loading problem: from benchmarking to im-
provements", Proceedings of the 14th EU/ME Workshop, Hamburg, Germany. February 28 to
March 1., pp. 79-84.

Zufferey, N., "Optimization by ant algorithms: Possible roles for an individual ant", Optimization
Letters, Vol. 6 (5), pp. 963-973.

