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1 Introdution

The Frenh ar manufaturer Renault is daily faing a NP-hard ombinatorial optimization

problem � alled here the Renault truk loading problem (RTLP ) � where items need to

be plaed in a truk while satisfying di�erent onstraints. More than a thousand truks are

daily onsidered, whih have to deliver goods to several ar fatories. As a single truk an

deliver goods to di�erent delivery points, lasses of items have been de�ned, where a lass

is assoiated with a delivery point. Eah problem instane ontains the size of the truk

(in millimeters) and the various sizes of all the items that must �t in (in millimeters). The

heights of the items an be ignored as they rely on omplex fatory onstraints whih are

supposed to be already satis�ed. At �rst sight, this problem seems related to a strip-paking

2D problem with rotation, whih has been already overed by many researh papers (Lodi

et. al. 2002). New features are proposed by Renault in RTLP : di�erent lasses of items,

and a signi�ant number of items per truk in onjuntion with a large standard deviation

of the sizes of the items. Suh elements make the onsidered problem more omplex, but

more relevant to modern and realisti issues. In this paper, we propose to takle RTLP
with Construtive Ant Systems (CAS), whih are evolutionary population-based meta-

heuristis. A good survey on ant algorithms an be found in (Dorigo et. al. 2006).

Based on (Respen and Zu�erey 2013), the problem and the solution spae struture are for-

mally desribed in Setion 2, where an e�ient deoding greedy algorithm is also designed.

In Setion 3 are proposed di�erent ant algorithms for RTLP . Numerial experiments are

reported and disussed in Setion 4.

2 Desription of the problem and solution spae struture

RTLP an be formally desribed as follows. A number n of retangular items have to be

plaed in a truk (of width Wt and length Lt), and 90◦ rotations of items are allowed.

For eah item i, we know its width wi, its length li, its initial orientation, and its lass

Cj (where j ∈ {1, . . . ,m} with m ≤ n). In addition, the lasses must be plaed in an

inreasing fashion from the front to the rear of the truk. More preisely, the ordinate of

the origin item whih belongs to lass Ci (label 1 on Figure 1) must be stritly smaller

than the ordinate of the extremity of any item of lass Ci+1 (label 2 on Figure 1). The goal

onsists in minimizing the ordinate f of the extremity item (the losest one to the rear) of

lass Cm (label 3 on Figure 1).

To takle bin-paking problems, one an work either with diret oded solutions or indiret

oded solutions. A diret oded solution diretly represents a real loading of the items in
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the truk, whih means that the position of eah item has to be ontinuously known. Then,

if an item is added to or removed from the truk, the new position of the loaded items is

very hard to reompute, whih is a major drawbak. Working with indiret oded solutions

require the use of a deoding algorithm to built the assoiated diret oded solution and

to get its value. Suh an approah has the main advantage of being very �exible when

adding (resp. removing) an item to (resp. from) the solution. Therefore, a deision has

been made to work with indiret oded solutions. More formally, an indiret oded solution

s is a sequene of elements. To build a diret oded solution ŝ and ompute its value f(s), a
deoding greedy algorithm (DGA) is performed on the indiret oded solution s. Component

i of the indiret oded solution s takes the form si = (IDi, Ci), where ID ∈ {1, . . . , n}, and
C ∈ {1, . . . ,m}. DGA deodes the vetor s into a real solution ŝ (i.e. a true loading) by

inserting in ŝ the items from s in a FIFO order. At eah step, DGA pops the next item

i of s and orients it greedily (i.e. by minimizing the augmentation of the loading length).

The omplexity of DGA is O(n). For instanes with n = 60, DGA requires less than 0.1

seond (on the used omputer) to deode a solution into a real loading. In summary, DGA
is requested to built a diret oded solution (i.e. a loading of the truk) from an indiret

oded solution (i.e. a loading sequene of items) and to ompute the length of the obtained

loading (i.e. the value of the solution).

Preliminary tests showed that the performane of DGA is rather poor. Indeed, at eah

iteration, DGA orients the involved item without having any visibility on the next items

to insert. To redue this drawbak, the following look-ahead proess is proposed. At eah

iteration, DGA evaluates the orientation of the involved unloaded item (say i) as follows.
DGA examines the insertion of the next σ (parameter tuned to 3) insertions subsequent

to the insertion of item i (i.e. a total number of σ + 1 items are tested). DGA tries eah

possible orientation (i.e. 90◦-rotated or not-rotated) for eah of the σ+1 items in order to

minimize the augmentation of the resulting loading length (in other words, 2(σ+1)
options

are evaluated). The orientation of item i is then the one assoiated with the best option.

For instanes with n = 60, DGA requires less than 0.5 seond (on the used omputer) to

deode a solution into a real loading.
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Fig. 1. A possible solution for RTLP

3 Ant algorithms for RTLP

We propose three di�erent onstrutive ant algorithms to takle RTLP (denoted CAS(1),
CAS(2) and CAS(3)), where eah ant is a onstrutive heuristi able to build an indiret

oded solution, and thus a loading. N (parameter tuned to 10) ants are used at eah

generation. For eah ant, at iteration i of its onstrution proess, let s = (s1, s2, . . . , si−1)
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be the partial indiret oded solution ontaining i−1 items. As in lassial ant algorithms,

the seletion of the next move (orresponding here as the next item to load) is based on

the greedy fore (de�ned as the short term pro�t) and the trail system (whih is a entral

memory based on the history of the searh, allowing ants to exhange information). In the

proposed ant algorithms, the GF 's and the TR's are normalized within interval [0,1℄ in

order to better ontrol these two types of information.

The greedy fore GF (i) of an item i is given by GF (i) = UB − DGA(s + {i}), where
UB = 4 · Lt is an upper bound of the loading. We an see that the larger GF (i) is, the
shorter is the loading s+ {i}, whih is onsistent with the notion of short term pro�t.

To de�ne the trail TR(i) of item i, we �rst de�ne the attrativeness Attract(j, k) between
two items j and k in an indiret oded solution s as n − dist(j, k), where dist(j, k) is

de�ned as the number of items between j and k in s (but dist(j, k) = 0 if k appears

before j in s). At the end of eah generation (i.e. when eah ant of the population has

provided a solution), eah trail TR(j, k) is updated as follows: TR(j, k) = ρ · TR(j, k) +
(1 − ρ) · ∆TR(j, k), where ρ ∈]0, 1[ is an evaporation oe�ient (�xed to 0.9, as in most

of the ant algorithms) and ∆TR(j, k) is a reinforement term. ∆TR(j, k) is de�ned as the

average attrativeness between j and k in the b% (parameter tuned to 50%) best solutions

of the urrent generation. The trail value TR(i) of item i an now be de�ned as TR(i) =∑
j∈s wji · TR(j, i), where wji is a weight de�ned as index(j)/index(i), where index(j) is

for example three is item j is the 3rd omponent of s. These weights allows to give more

importane to pairs of items whih are loser in s (aording to the distane funtion dist).
In CAS(1), when onstruting an indiret oded solution, eah ant selets the next item

i to load � in the set Ω of non already inserted items � using the standard probability

funtion prob de�ned as in Equation (1), where α and β are parameters. Interestingly,

preliminary experiments showed that better results are obtained with parameter α (tuned

to 0.5) smaller than parameter β (tuned to 2). It means that more importane should be

given to the greedy fore rather than to the trail.

prob(i) =
GF (i)α · TR(i)β

∑

j∈Ω

GF (j)α · TR(j)β
(1)

In CAS(2), an ant hooses the next item i using Equation (1) with probability p (parameter

tuned to 0.35), but the item whih maximizes GF (j)·TR(j) otherwise (i.e. with probability

(1 − p)). In other words, CAS(2) is more aggressive than CAS(1) as the usual tradeo�

between the greedy fores and the trails only ours with probability p.
In CAS(3), eah ant selets the next item i as follows. First, it generates the set A with

the q% (parameter tuned to 0.75) largest TR values. Then among the set A, it selets the
item with the largest GF value (ties are broken randomly). In ontrast with CAS(1) and
CAS(2), the greedy fores and the trails are suessively used in order to selet the next

item (instead of jointly).

4 Results

In order to better benhmark the results, we ompare the ant algorithms with an exhaustive

greedy method EG. EG builds an indiret oded solution s from srath, and at eah step

greedily inserts the next item in s (with the use of the look-ahead proess). We onsider a

set of 30 real benhmark instanes provided by Renault. Tests were performed on an Intel

Quad-ore i7 � 3.4 GHz with 8 GB DDR3 of RAM memory, with a time limit T of 900

seonds. In order to have fair omparisons, EG is restarted as long as T is not reahed,
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whereas the CAS's results are averaged over 10 runs. Table 1 presents the results of the

di�erent algorithms. For eah instane ID are �rst given the number n of items and the

numberm of lasses. Column f⋆
indiates the best objetive funtion value returned by any

of the onsidered algorithms. The seond olumn EG shows the perentage gap between

the best solution value returned by EG and f⋆
. The remaining olumns show the same

information for the ant algorithms. The last row indiates the average gap of eah method.

We remark that all the CAS methods outperform EG, whih means that the trail system

is relevant. CAS(2) outperforms CAS(1), whih shows that an aggressive seletion proess

seems to be more interesting than the use of Equation (1). As the best methods is CAS(3),
it seems that a sequential use of the trails and the greedy fores in the seletion proess

of an ant seems to be more e�ient than the joint use of these quantities (as in CAS(1),
CAS(2), and most of the state-of-the-art ant algorithms). This on�rms the observations

of (Zu�erey 2012) for the famous graph oloring problem.

Table 1. Obtained results

ID n m f⋆ EG CAS(1) CAS(2) CAS(3)

1 23 1 12970 1.62% 0.80% 1.63% 0.13%

2 25 1 13226 2.07% 0.70% 0.64% 1.48%

3 24 1 12950 2.59% 1.06% 1.38% 0.70%

4 25 1 13170 2.75% 1.32% 1.02% 2.37%

5 26 1 13470 0.07% 1.02% 0.80% 1.02%

6 20 2 14000 2.07% 2.07% 1.73% 1.77%

7 23 1 12980 4.21% 2.74% 2.24% 1.26%

8 25 1 14288 3.26% 1.95% 2.31% 2.37%

9 18 4 13369 0.44% 3.55% 3.40% 4.50%

10 23 3 13068 3.48% 3.92% 3.46% 4.02%

11 20 2 13560 2.06% 1.79% 1.92% 1.89%

12 17 3 12992 2.42% 0.81% 0.88% 0.80%

13 25 1 13470 1.97% 0.93% 1.23% 0.54%

14 20 2 13240 3.55% 3.50% 3.74% 3.44%

15 20 4 13685 2.26% 2.83% 3.27% 2.99%

16 24 1 13070 3.21% 1.71% 2.10% 0.88%

17 23 4 13078 2.03% 1.43% 1.05% 2.09%

18 24 1 13380 4.56% 1.45% 2.27% 0.68%

19 24 1 13380 4.56% 1.45% 2.27% 0.68%

20 23 1 13070 5.05% 2.41% 2.28% 1.29%

21 25 1 13146 2.84% 1.64% 1.44% 2.03%

22 25 1 13470 1.60% 1.04% 1.00% 0.09%

23 24 1 13380 4.04% 1.34% 1.75% 0.97%

24 18 2 11640 2.41% 2.72% 1.67% 1.86%

25 23 1 12550 1.20% 1.87% 1.16% 1.79%

26 19 2 12220 1.06% 1.91% 1.48% 1.69%

27 23 1 13250 5.86% 1.35% 2.08% 0.77%

28 25 1 13416 1.97% 1.66% 1.14% 0.64%

29 20 1 13500 10.74% 5.13% 4.02% 4.79%

30 25 1 13196 3.80% 1.93% 1.07% 2.10%

AVG 2.99% 1.93% 1.88% 1.72%
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