
A Renault truck loading problem: from benchmarking to

improvements

Jean Respen∗ Nicolas Zufferey

Abstract

To deliver goods to car factories, the car manufac-
turer Renault is daily facing a complex truck load-
ing problem where various goods must be packed
into a truck such that they fulfill different con-
straints. As trucks can deliver goods to different
factories on the same tour, classes of items have
been defined, where a class is associated with a de-
livery point. As the number of items and the stan-
dard deviation of the sizes of the items are signif-
icant, no exact algorithm is competitive. We pro-
pose four local search methods, namely four tabu
search algorithms. Results show that tabu search is
competitive compared to the greedy heuristics de-
veloped by Renault.

Keywords: Truck loading, metaheuristics, bin-
packing

1 Introduction

The French car manufacturer Renault is facing a
complex truck loading problem, where items need
to be placed in a truck such that they fulfill dif-
ferent constraints. This problem is called here the
Renault truck loading problem (RTLP ). Renault is
dealing on a daily basis with more than a thousand
trucks, which have to deliver goods to car factories,
making this problem relevant to their production
plan. As a single truck can deliver goods to dif-
ferent delivery points, classes of items have been
defined, where a class is associated with a delivery
point. Each problem instance contains the size of
the truck (in millimeters) and the various sizes of
all the items that must fit in (in millimeters). The
heights of the items can be ignored as they rely on
complex factory constraints which are supposed to
be already satisfied. At first sight, this problem
seems related to a strip-packing 2D problem with
rotation, which has been already covered by many
research papers. In the strip-packing 2D problem,

∗Both authors from: HEC - University of
Geneva, Switzerland (email: jean.respen@unige.ch,

nicolas.zufferey-hec@unige.ch)

rectangular items must be packed in a single bin of
fixed width and infinite length, with the objective
of minimizing the total length of the packing. Rel-
evant surveys on this topic can be found in [4], [7],
[13], and [16]. This problem is a strongly NP-hard
combinatorial problem.

In this paper, we aim to tackle some new features
proposed by Renault : different classes of items, and
a significant number of items per truck in conjunc-
tion with a large standard deviation of the sizes
of the items. Such elements make the considered
problem more relevant to modern and realistic is-
sues. To solve RTLP , Renault proposes a simple
but efficient greedy heuristic (SG), and an advanced
greedy heuristic called ”look-ahead greedy” (LAG).
Renault proposes us to benchmark their algorithms
with state-of-the-art metaheuristics, to measure the
possible gap between their algorithms and a possi-
ble better solution method. An important aspect
is the tradeoff between the computing time and the
solution quality. As LAG is fast, another meta-
heuristic is only relevant if it is fast and finds an
important gap in the solution quality.

The paper is organized as follows. In Section 2 is
proposed a formal description of the problem. In
Section 3, a review of the literature concerning the
bin-packing problems is depicted. In Section 4 are
proposed the heuristics for RTLP and the obtained
results are discussed in Section 5. Section 6 con-
cludes the research and proposes some future works.

2 Description of the problem

RTLP can be formally described as follows: a num-
ber n of items, each one belonging to a certain class
Ci (with i ∈ {1, . . . ,m} such that m ≤ n), need to
be placed in a truck such that all the items belong-
ing to the same class are adjacent. In addition, the
classes must be placed in an increasing fashion from
the front to the rear of the truck. More formally, the
ordinate of the origin item which belongs to class Ci

(label 1 on Figure 1) must be strictly smaller than
the ordinate of the extremity of any item of class
Ci+1 (label 2 on Figure 1), and such that the ordi-
nate of the extremity item (the closest one to the



rear) of class Cm (label 3 on Figure 1), denoted as
f , is minimized. The truck size is a hard constraint
to fulfill, as it is not allowed to exceed neither its
length nor its width.

1

2

3

Cm

Ci+1

Ci+1Ci
Ci

Ci

C1

C1

C1

Figure 1: A possible solution

Nowadays, small and medium instances of bin-
packing problems are tackled with exact methods
and solvers based on linear programming. For the
standard bin-packing problem, small instances con-
tain up to 100 items. In contrast, small instances
are limited to 10 items for RTLP . This is due to
the large standard deviation among the sizes of the
items (the items have widths or lengths of minimum
570mm and maximum 1810mm with a standard de-
viation of 196), and of the classes management. Re-
nault showed in [12] that no exact method can be
competitive to tackle their real instances. There-
fore, heuristics and metaheuristics are considered
in this paper for RTLP .

3 Related literature

For exact methods, literature often proposes
methods to tackle instances proposed by
Beasley (1985, http://people.brunel.ac.uk/

~mastjjb/jeb/info.html) or by Bengston (1982,
http://www.ibr.cs.tu-bs.de/alg/packlib/

xml/b-prpha-82-xml.shtml). The sizes of the
instances are with up to 200 items. Each item has
an width or a length in {1, . . . , 100} and a standard
deviation of approximately 30 to 40.

If the number of items is less than a hundred, an
exact branch-an-bound is proposed in [11] to tackle
a problem where a set of n rectangular pieces must
be cut from an unlimited number of standardized
stock pieces. This problem is a generalization of the
2D bin-packing problem (2D-BPP). More recently,
in [10], an exact method for the strip-packing prob-
lem is proposed, solving instances with up to 200
items. The paper proposes a new relaxation, driv-
ing to a better lower bound, which is then used with
a branch-and-bound algorithm to solve instances to
optimality. Lower-bounds and an integer linear for-
mulation for the 2D-BPP with less than a hundred
items are depicted in [14], where bins have variable
sizes and costs, and the objective is to minimize
the overall cost of bins used for packing the items.
For the perfect packing problem, where there is no
wasted space, in [6] is proposed an exhaustive ap-
proach, using a branch-and-bound, able to tackle
instance with up to 30 items. Finally a mixed in-
teger programming formulation for the three-stages
2D-BPP is proposed in [15]. In real application,
three-stages often occur, where a stage is either a
horizontal or a vertical cut. Because of the speci-
ficity of RTLP , it is not possible to take advantage
of the above exact algorithms to tackle it. Renault
even showed in [12] that an exact method relying
on a recent version of CPLEX is limited to 6 or 7
items.

In the area of bin-packing, many researches focus
on heuristics to tackle problems involving packing
of items. A survey is proposed in [9] on heuristic
and metaheuristic methods for the 2D-BPP, with
greedy algorithms and a tabu search for four dif-
ferent problems (bin-packing with or without rota-
tion, and with guillotine cutting required or not).
Instances sizes varies from 10 up to 100. The goal
of the tabu search is to empty a specific target bin
B by performing moves, which consist in moving
subsets of items from B to other bins, where they
can be rearranged. A tree-decomposition heuristic
for the BPC-2D (2D bin-packing with conflict) is
proposed in [5] for instances with up to 100 items,
where a conflict graph G = (V,E) is given, for which
each vertex j ∈ V represents an item, and there is
an edge [j, j′] ∈ E if items j and j′ are incompatible.
If two incompatible items are loaded in the same
bin, a conflict occurs. The goal is to minimize the
total number of bins, without creating any conflict.
Simple heuristics and a tabu search are proposed to
tackle this problem, where for the tabu search, the
neighborhood structure consists to move an item



from a bin to another. A tabu search is proposed in
[8] to tackle the problem of packing each item into
a bin, such that the total number of required bins
is minimized. A move also corresponds to relocate
an item in the solution. Instances contain at most
100 items. The TS2PACK algorithm is proposed
in [1]. It consists in a two-level tabu search for the
3D bin-packing problem (where the height of the
bin has to be also considered). Whereas the first
level aims at minimizing the total required number
of bins, the second level consists in optimizing the
packing of the bins. Instances sizes range from 50
to 200 items. Similarities between the bin-packing
and the stock cutting problems are depicted in [7].

4 Heuristics

As mentioned earlier, Renault proposes two differ-
ent greedy heuristics (SG and LAG) for RTLP .
In order to challenge their algorithms, local search
methods are designed. In this context, comparisons
is proposed between the Renault greedy algorithms
and four tabu search algorithms.

4.1 Greedy heuristics

SG builds a solution from scratch, and at each it-
eration, select an item (following different possible
rules) from a list L of non already inserted items,
and adds it to the solution at minimum cost (i.e.
which minimizes the augmentation of f , label 3 of
Figure 1). This process stops when L is empty. In
LAG, at each iteration, the algorithm tries each
item j of L, and for each j, tries the next p (pa-
rameter) insertions following this possible insertion
of j (look-ahead process). At the end of the itera-
tion, the item j that would involve the lowest cost
in the next p iterations is selected and inserted at
the best position. As before, this process contin-
ues until L becomes empty. Both processes are fast
(a few seconds per run), and therefore relevant to
Renault as they are dealing with more than a thou-
sand trucks to operate on a daily basis. As the
truck loading plan has to be often rebuilt, due to
constant changes in the production plan, the need
for a fast and efficient algorithm is mandatory. The
two above methods perform restarts as long as a
time limit T is not reached. When T is reached,
the best generated solution is returned.

4.2 Local search algorithms

In contrast with greedy algorithms, where a solu-
tion is built step by step, a local search method
starts from an initial solution, and at each itera-
tion, explores the neighborhood N(s) of the current
solution s to reach a possible better solution. The
neighborhood of a solution s is the set of solutions
reachable from s when performing a specific mod-
ification (called a move) on s. The neighborhood

exploration continues until a stopping criterion is
met (usually a number of iterations or a computing
time limit), and the best found solution is returned
to the user.

In this context, a descent algorithm performs the
best move at each iteration, and stops when no im-
provement of the current solution is possible. In
other words, a descent method stops when it reaches
a local optimum. Tabu search (TS) was first pro-
posed by Glover in [3] and is nowadays still con-
sidered as one of the most efficient method for ex-
ploring the search space. To prevent tabu search
from being stuck in a local optimum, when a move
is performed, TS forbids the reverse move for θ (pa-
rameter) iterations. To get a better understanding,
a sketch of a generic tabu search is presented in
Algorithm 1. A recent review on metaheuristics is
proposed in [2], which is a good reference book in
this area.

Algorithm 1 Generic tabu search

Generate an initial solution s and set s⋆ = s

While no stopping criterion is met, do

1. Perform a move to reach the best non tabu
neighbor solution s′ ∈ N(s)

2. Forbid the reverse move for θ iterations

3. Set s = s’

4. If f(s) < f(s⋆), set s⋆ = s

Return the best solution s⋆

4.2.1 Solution space

A decision has been made to use an encoded solu-
tion s while working with the local search methods.
The encoded solution s is actually a list of elements.
To build a solution and compute its quality, a de-
coding greedy algorithm (DGA) is performed on the
encoded solution. It decodes the solution s into a
real solution ŝ, and then returns the total length of
the truck load f . To drive DGA, information (some
are mandatory and others are optional) are car-
ried in each element of s, and can contain the item
identifier (ID, mandatory), the class identifier (C,
mandatory), the item orientation (O, optional), and
the item side (S, optional). Thus, component i of
the solution s takes the form si = (IDi, Ci, Oi, Si),
where ID ∈ {1, . . . , n}, C ∈ {1, . . . ,m}, O ∈ {not
rotated, 90◦ rotated}, and S ∈ {left-sided, right-
sided}. DGA thus decodes the vector s into a real
solution ŝ by inserting in ŝ the items from s in a
FIFO order, and using the O and S information
(if provided) while respecting the class management
constraints. At each step, DGA pops the next item
i of s, greedily loads it in the truck, while respect-
ing Ci, Oi and Si. If Oi (or Si) is not provided,



DGA can decide by itself its value (minimizing the
augmentation of f), and thus owns more freedom.

An example is now proposed. Five items, ini-
tially oriented as presented in Figure 2, have to
be placed in a truck. A possible encoded solution
is the following: s=((1,1,not rotated,right-sided),
(3,1,90◦ rotated,right-sided), (2,1,90◦ rotated,left-
sided), (5,2,?,?), (4,2,?,right-sided)). The corre-
sponding decoded solution ŝ is illustrated in Figure
3.

1
32

5

4

Figure 2: Items (with initial orientations)

1

3

2

5

4

Figure 3: Decoded solution ŝ

To generate this solution,DGA performs the follow-
ing steps: it pops the first element ID1 and loads
the corresponding item on the right side, without
rotation. At that time, the next item, correspond-
ing to ID3, is loaded on the right with a 90◦ ro-
tation. Then item ID2 is loaded on the left with
rotation whereas item ID5 is inserted at the best
possible position tried by DGA while respecting the
class constraint. Finally item ID4 is inserted on the
right side but DGA decided its orientation. When
DGA is over, it returns the value f , which is in this
example the extremity of item ID4

4.2.2 Neighborhood structures

To generate a neighbor solution s′ from the current
solution s, the seven following moves are possible:

• move an item j from position x to position y;

• move an item j from position x to position y

while switching to the opposite value its orien-
tation O;

• move an item j from position x to position y

while switching to the opposite value its side
S;

• move an item j from position x to position y

while switching S and O to the opposite values;

• switch O to the opposite value;

• switch S to the opposite value;

• switch O and S to the opposite values.

All the moves are performed while respecting the
class management constraint and ties are broken
randomly.

4.2.3 Tabu search

Four different tabu search are proposed, denoted
TS1, TS2, TS3 and TS4. The notation TS is sim-
ply used if it refers to common features of the four
tabu search algorithms. TS starts from an initial
encoded solution where items are ordered by de-
creasing areas.

TS1, TS2, TS3 and TS4 differ in the sense that for
TS1, only the information ID and C are contained
in each element of the encoded solution. TS2 con-
tains ID, C, and O. TS3 contains ID, C, and S.
TS4 contains ID, C, O and S. Thus, for TS1, DGA

can decide on its own the orientations and the sides
(while focusing on the smallest augmentation of f).
In TS2 and TS3, DGA has the order in which the
insertion must be made, and the orientation or the
side of each item (but not both). Finally TS4 con-
straints DGA at the maximum due to the complete
information set contained in each component si of
the vector s.

In tabu search, it is common that, at each itera-
tion, only a fraction υ of the possible moves are
generated. This restriction in the neighborhood
size allows to perform more iterations for a same
time limit, and helps in bringing more diversifica-
tion. The neighborhood size υ is set to 50%, while,
at each iteration, the tabu tenure θ is set to a uni-
formly distributed value between 25 and 55. Such
values were determined by prior computational ex-
periments.

5 Results

In this section are compared all the methods pre-
sented in this paper on a set of 30 real benchmark
instances provided by Renault. Note that a total of



600 instances exist (with the same difficulty), and
are available upon request to the authors. Tests
were performed on an Intel Quad-core i7 @ 3.4 GHz
with 8 GB DDR3 of RAM memory. The time limit
T is set to 1800 seconds. Such a time limit was
confirmed to be a relevant value, as the goal of this
project is to benchmark the Renault algorithms by
finding the best possible solutions. Thus, the com-
putation time is not a hard constraint in this case.
As tabu search is not a method with restarts, its
results are averaged over five runs.

The results are summarized in Table 1. The first
two columns indicate the values of n (number of
items) and m (number of classes) of each instance.
The third column (f⋆) corresponds to the objective
function value of the best solution ever found by any
of the algorithms. The following column reports the
percentage gap between the solution of SG and f⋆.
The next columns provide the same information for
the other methods. For each instance, the best re-
sult is indicated in bold. The last rows give the
average gap per method depending on m, in addi-
tion to the average times (in seconds, rounded to
the closest integer) per method, and depending on
m, to find the best solution. As we do not have time
indications about SG and LAG, the corresponding
cells are blank.

The superiority of LAG over SG is obvious, as the
average gap decreases by a factor of more than five
between the two methods. This is mainly due to
the fact that LAG, with the parameter p, explores
the impact of future possible insertions. On the
opposite, SG does not have any indication on the
short term consequences of the current insertion.
TS does not show amazing improvements on the
greedy heuristics. We conjecture that it is due to
the fact that f⋆ is not far from the optimum.

TS1 is a method to avoid as it obtains poor results
on most of the instances. This is probably due to
the full freedom given to DGA to build a solution,
when compared to the other algorithms. We can
observe that TS1 is much better when the number
of classes is one. In this case, the freedom given
to DGA seems to be more relevant, as the class
management constraint is not used and the number
of tests to find a good insertion is more important.

TS4 is less competitive than TS2 and TS3. This
can be easily explained by the fact that TS4 do not
let DGA any choice on the solution building. It is
thus not surprising that TS4 is the fastest method
(regarding the time needed per iteration) of the TS
family, as DGA does not have to perform a lot of
test to insert an item at the best position. However,
even if TS4 it is the fastest method per iteration,
it is the slowest method to find its best solution.

Table 1: Computational results

n m f⋆ SG LAG TS1 TS2 TS3 TS4

23 1 12840 1.01 0.86 4.60 0.06 0.21 0.92

25 1 13000 3.85 0.31 3.85 0.00 0.05 0.98

24 1 12920 1.32 0.08 1.39 0.00 0.06 0.38

25 1 13040 3.76 0.31 3.76 0.00 0.00 0.60

26 1 13460 0.15 0.07 0.15 0.00 0.00 0.01

20 2 13610 6.83 1.25 14.11 0.00 1.25 0.53

23 1 12980 3.08 0.08 6.63 0.00 0.00 0.26

25 1 14120 4.02 4.01 3.75 0.07 0.00 0.26

18 4 13295 0.56 0.15 24.69 0.00 0.05 0.18

23 3 12852 5.23 0.50 18.67 0.00 0.03 0.16

20 2 13330 9.08 0.60 12.08 0.00 0.08 0.08

17 3 13070 0.23 0.15 14.77 0.00 0.00 0.00

25 1 13390 1.12 0.97 1.05 0.00 0.16 0.42

20 2 13150 7.53 1.52 12.09 0.00 0.61 0.67

20 4 13325 4.68 2.42 25.77 0.00 2.65 0.11

24 1 13010 3.69 0.46 3.61 0.00 0.00 0.52

23 4 12902 3.36 2.19 6.17 0.02 1.02 0.39

24 1 13380 1.12 0.60 4.11 0.00 0.00 0.04

24 1 13380 1.12 0.60 4.11 0.00 0.00 0.04

23 1 13040 3.68 0.23 6.75 0.00 0.05 0.26

25 1 13020 3.76 0.23 3.76 0.00 0.00 0.53

25 1 13380 0.82 0.60 0.75 0.00 0.00 0.20

24 1 13380 1.12 0.60 4.04 0.00 0.00 0.01

18 2 11530 10.41 0.95 11.88 0.00 0.00 0.00

23 1 12550 21.12 0.00 9.96 0.00 0.00 0.00

19 2 12170 6.98 0.33 9.20 0.00 0.00 0.00

23 1 13070 3.83 0.23 6.96 0.00 0.05 0.51

25 1 13380 0.75 0.60 0.75 0.00 0.00 0.12

20 1 13300 1.50 1.13 17.29 0.00 0.18 1.01

25 1 13080 3.59 0.08 3.59 0.00 0.00 0.28

AVG 3.98 0.74 8.01 0.00 0.21 0.32

AVG (m = 1) 3.22 0.60 4.54 0.01 0.04 0.37

AVG (m > 1) 5.49 1.01 14.94 0.00 0.57 0.21

AVG t 176 232 240 645

AVG t (m = 1) 177 323 289 712

AVG t (m > 1) 173 48 141 513

Results show that TS2 has the minimum gap on 29
instances over 30. Experiments clearly show that
some freedom should be given to DGA, as TS2
and TS3 are the most powerful tabu search meth-
ods. Remember that the difference between TS2
and TS3 is the carried information O or S. Results
show that O is the most important feature to carry
in the encoded solution s. This can be explained in
the sense that the orientation O has an important
impact, as it clearly drives ŝ by forcing the orienta-
tion of each item.
The average times show that if m > 1, TS2 con-
verges very quickly to a promising local optimum.
For such instances, the performance of TS3 de-
creases as it is even outperformed by TS4. This is
probably due to the fact that there is less possibility
to move the items in the solution, as the class man-
agement constraint must be respected, and thus al-
lows TS2 to find the local optimum faster.



Figure 4 shows a plot indicating for each average
time x (horizontal axis), the total number y (ver-
tical axis) of trucks (among 30) requiring less than
x seconds to find its best solution. We can observe
that fifteen instances require less than 100 seconds.
Note that the average time over all the trucks is 175
seconds, and that the maximum time for a single
truck was found to be 663 seconds. As mentioned
above, the time limit T is set to 1800 seconds for all
the algorithms, thus there exists a lot of spare time
in the TS2 algorithm (and in the other TS meth-
ods as well). A diversification procedure could be
a relevant feature to improve the search and better
use the remaining time.

Figure 4: Average time needed by TS2 to provide its
best solutions based on a time limit of 1800 seconds

6 Conclusion

In this paper, we have proposed a practical appli-
cation daily faced by the French car manufacturer
Renault. We compared their algorithms to more so-
phisticated methods and showed that tabu search is
powerful. Future work includes adding diversifica-
tion and intensification procedures to tabu search to
improve its performance. In addition, genetic algo-
rithms have proven their capabilities to give good
results on the bin-packing problems, a hybrid ge-
netic algorithm should be proposed in conjunction
to tabu search. Moreover, as we already have differ-
ent neighborhoods, a variable neighborhood search
(VNS) could as well be easily set up and tested.

Acknowledgments

The authors would like to thank Alain Nguyen and
Jean-Philippe Brenaut, both from the Renault op-
erations research team, for their availability and rel-
evant advices on the elaboration of the algorithms.

References

[1] T. G. Crainic, G. Perboli, and R. Tadei.
TS2PACK: A two-level tabu search for the three-
dimensional bin packing problem. European Jour-

nal of Operational Research, 195(3):744–760, 2009.

[2] M. Gendreau and J.-Y. Potvin. Handbook of Meta-

heuristics. International Series in Operations Re-
search & Management Science. Springer, 2010.

[3] F. Glover. Tabu search - part I. ORSA Journal on

Computing, 1:190–205, 1989.

[4] E. Hopper and B.C.H. Turton. An empirical inves-
tigation of meta-heuristic and heuristic algorithms
for a 2D packing problem. European Journal of

Operational Research, 128(1):34–57, 2001.

[5] A. Khanafer, F. Clautiaux, and E.-G. Talbi.
Tree-decomposition based heuristics for the two-
dimensional bin packing problem with conflicts.
Computers & Industrial Engineering, 39(1):54–63,
2012.

[6] N. Lesh, J. Marks, A. McMahon, and M. Mitzen-
macher. Exhaustive approaches to 2D rectangular
perfect packings. Information Processing Letters,
90(1):7–14, 2004.

[7] A. Lodi, S. Martello, and M. Monaci. Two-
dimensional packing problems: A survey. European
Journal of Operational Research, 141(2):241–252,
2002.

[8] A. Lodi, S. Martello, and D. Vigo. Approxima-
tion algorithms for the oriented two-dimensional
bin packing problem. European Journal of Opera-

tional Research, 112(1):158–166, 1999.

[9] A. Lodi, S. Martello, and D. Vigo. Heuristic
and metaheuristic approaches for a class of two-
dimensional bin packing problems. INFORMS

Journal on Computing, 11(4):345–357, April 1999.

[10] S. Martello, M. Monaci, and D. Vigo. An exact
approach to the strip-packing problem. INFORMS

Journal on Computing, 15:310–319, 2003.

[11] S. Martello and D. Vigo. Exact solution of the
two-dimensional finite bin packing problem. Man-

agement Science, 44(3):388–399, 1998.

[12] A. Nguyen and J-Ph. Brenaut. A truck loading
algorithm for Renault’s supply chain system. In
23rd EURO Conference, Bonn, Germany, July 5-
8, 2009.

[13] N. Ntene and J.H. van Vuuren. A survey and com-
parison of guillotine heuristics for the 2D oriented
offline strip packing problem. Discrete Optimiza-

tion, 6(2):174–188, 2009.

[14] D. Pisinger and M. Sigurd. The two-dimensional
bin packing problem with variable bin sizes and
costs. Discrete Optimization, 2(2):154–167, 2005.

[15] J. Puchinger and G. R. Raidl. Models and algo-
rithms for three-stage two-dimensional bin pack-
ing. European Journal of Operational Research,
183(3):1304–1327, 2007.

[16] M.C. Riff, X. Bonnaire, and B. Neveu. A revi-
sion of recent approaches for two-dimensional strip-
packing problems. Engineering Applications of Ar-

tificial Intelligence, 22(45):823–827, 2009.


